The upper connected edge geodetic number of a graph

نویسندگان

  • A. P. Santhakumaran
  • J. John
  • Dragan Stevanović
چکیده

For a non-trivial connected graph G, a set S ⊆ V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum order of its edge geodetic sets and any edge geodetic set of order g1(G) is an edge geodetic basis. A connected edge geodetic set of G is an edge geodetic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected edge geodetic set of G is the connected edge geodetic number of G and is denoted by g1c(G). A connected edge geodetic set of cardinality g1c(G) is called a g1cset of G or connected edge geodetic basis of G. A connected edge geodetic set S in a connected graph G is called a minimal connected edge geodetic set if no proper subset of S is a connected edge geodetic set of G. The upper connected edge geodetic number g 1c(G) is the maximum cardinality of a minimal connected edge geodetic set of G. Graphs G of order p for which g1c(G) = g + 1c = p are characterized. For positive integers r,d and n ≥ d + 1 with r ≤ d ≤ 2r, there exists a connected graph of radius r, diameter d and upper connected edge geodetic number n. It is shown for any positive integers 2 ≤ a < b ≤ c, there exists a connected graph G such that g1(G) = a, g1c(G) = b and g + 1c(G) = c.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the edge geodetic and edge geodetic domination numbers of a graph

In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...

متن کامل

Distinct edge geodetic decomposition in graphs

Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...

متن کامل

The Upper Edge Geodetic Number and the Forcing Edge Geodetic Number of a Graph

An edge geodetic set of a connected graph G of order p ≥ 2 is a set S ⊆ V (G) such that every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum cardinality of its edge geodetic sets and any edge geodetic set of cardinality g1(G) is a minimum edge geodetic set of G or an edge geodetic basis of G. An edge geodetic set S in ...

متن کامل

The upper forcing edge-to-vertex geodetic number of a graph

For a connected graph G = (V,E), a set S ⊆ E is called an edge-to-vertex geodetic set of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining some pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is gev(G). Any edge-to-vertex geodetic set of cardinality gev(G) is called an edge-to-vertex geodetic basis of G. A subset T ⊆ S i...

متن کامل

The edge geodetic number and Cartesian product of graphs

For a nontrivial connected graph G = (V (G), E(G)), a set S ⊆ V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum order of its edge geodetic sets. Bounds for the edge geodetic number of Cartesian product graphs are proved and improved upper bounds are determined for a speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012